Site Features

Space History

Members

  • Log In
  • Sign Up

Useful Articles

Support Department

  • FAQ System
  • Contact List
  • Suggestion Box

Site Keywords

 . Space History News - People and events in development of space travel Space History News - People and events in development of space travel Space History News - People and events in development of space travel  

Space History for December 22


If you are not already a subscriber, you are welcome to enter your email address here to sign up to receive the Space History newsletter on a daily basis. Under no circumstances will we release your legitimate email address entered here to outside persons or organizations, and it will only be used for mailing the specific information you have requested.

Enter your email address here:
 

Unsubscribe instructions are included in every newsletter issue in case you decide you no longer wish to receive it.

Note: We record the IP address from which subscriptions are entered to help prevent SPAM abuses.


Race To Space
Someone will win the prize...
               ... but at what cost?
Visit RaceToSpaceProject.com to find out more!


1666
The inaugural meeting of the French Academy of Sciences was held when a small group of scholars met in the King's library, invited by Jean-Baptiste Colbert.
https://en.wikipedia.org/wiki/French_Academy_of_Sciences

1867
Died, Jean-Victor Poncelet, mathematician, founded projective geometry
https://mathshistory.st-andrews.ac.uk/Biographies/Poncelet/

1886
C. H. F. Peters discovered asteroid #264 Libussa.

1891
M. Wolf discovered asteroid #323 Brucia.

1892
Born, Herman Potočnik, rocket engineer and cosmonautics pioneer

Herman Potočnik (pseudonym Hermann Noordung) (22 December 1892 - 27 August 1929) was a Slovene rocket engineer and pioneer of cosmonautics (astronautics). He is chiefly remembered for his work addressing the long-term habitation of space.



Herman Potočnik, rocket engineer
Source: Wikipedia
https://en.wikipedia.org/wiki/Herman_Poto%C4%8Dnik

1910
M. Wolf discovered asteroid #707 Steina.

1911
Born, Grote Reber, US astronomer (first parabolic radio telescope)
https://en.wikipedia.org/wiki/Grote_Reber

1913
F. Kaiser discovered asteroid #773 Irmintraud.

1960
USSR launched an SL-3 rocket with 2 dogs aboard (Damka meaning "Little Lady", and Krasavka meaning "Beauty"), the third stage failed and the orbital launch was aborted, but the dogs survived the suborbital flight.
https://www.enchantedlearning.com/subjects/astronomy/dogs/

1961
Born, Yuri Ivanovich Malenchenko (at Svetlovodsk, Kirovograd Oblast, Ukrainian SSR), Colonel Russian AF, Soviet/Russian cosmonaut (MIR 16, STS 106, ISS 07, ISS 16, ISS 32/33, ISS 46/47; over 827d 9.25h total in spaceflight), first person married in space

Cosmonaut Yuri I. Malenchenko, NASA photo (1 July 2003)
Source: Wikipedia (spaceflight.nasa.gov killed 25 Feb 2021)
http://www.spacefacts.de/bios/cosmonauts/english/malenchenko_yuri.htm

1964
The first official flight was made by a Lockheed SR-71 spy aircraft, one of which later reached 3,530 kph (2,193.13 mph), setting the standing record (2021) for manned air-breathing jet aircraft.
https://www.lockheedmartin.com/en-us/news/features/history/blackbird.html

1978
N. Chernykh discovered asteroid #2836 Sobolev.

1983
NASA's ISEE 3/ICE probe passed 119.4 km above the Moon's surface in the final encounter with the Earth-Moon system which took it into a comet-passing heliocentric orbit.

The Explorer-class heliocentric spacecraft, International Sun-Earth Explorer 3, was part of the mother/daughter/heliocentric mission (ISEE 1, 2, and 3). The purposes of the mission were: (1) to investigate solar-terrestrial relationships at the outermost boundaries of the Earth's magnetosphere; (2) to examine in detail the structure of the solar wind near the Earth and the shock wave that forms the interface between the solar wind and Earth's magnetosphere; (3) to investigate motions of and mechanisms operating in the plasma sheets; and, (4) to continue the investigation of cosmic rays and solar flare emissions in the interplanetary region near 1 AU.

The three spacecraft carried a number of complementary instruments for making measurements of plasmas, energetic particles, waves, and fields. The mission thus extended the investigations of previous IMP spacecraft. The launch of three coordinated spacecraft in this mission permitted the separation of spatial and temporal effects. ISEE 3, launched 12 August 1978, had a spin axis normal to the ecliptic plane and a spin rate of about 20 rpm. It was initially placed into an elliptical halo orbit about the Lagrangian libration point (L1) 235 Earth radii on the sunward side of the Earth, where it continuously monitored changes in the near-Earth interplanetary medium. In conjunction with the mother and daughter spacecraft, which had eccentric geocentric orbits, this mission explored the coupling and energy transfer processes between the incident solar wind and the Earth's magnetosphere. In addition, the heliocentric ISEE 3 spacecraft also provided a near-Earth baseline for making cosmic-ray and other planetary measurements for comparison with corresponding measurements from deep-space probes. ISEE 3 was the first spacecraft to use the halo orbit.

In 1982, ISEE 3 began the magnetotail and comet encounter phases of its mission. A maneuver was conducted on 10 June 1982 to remove the spacecraft from the halo orbit around the L1 point and place it in a transfer orbit involving a series of passages between Earth and the L2 (magnetotail) Lagrangian libration point. After several passes through the Earth's magnetotail, with gravity assists from Lunar flybys in March, April, September and October of 1983, a final close Lunar flyby (119.4 km above the Moon's surface) on 22 December 1983 ejected the spacecraft out of the Earth-Moon system and into a heliocentric orbit ahead of the Earth, on a trajectory intercepting that of Comet Giacobini-Zinner. At this time, the spacecraft was renamed International Cometary Explorer (ICE). A total of fifteen propulsive maneuvers (four of which were planned in advance) and five Lunar flybys were needed to carry out the transfer from the halo orbit to an escape trajectory from the Earth-Moon system into a heliocentric orbit.

The primary scientific objective of ICE was to study the interaction between the solar wind and a cometary atmosphere. As planned, the spacecraft traversed the plasma tail of Comet Giacobini-Zinner on 11 September 1985, and made in situ measurements of particles, fields, and waves. It also transited between the Sun and Comet Halley in late March 1986, when other spacecraft (Giotto, Planet-A, MS-T5, VEGA) were also in the vicinity of Comet Halley on their early March comet rendezvous missions. ICE became the first spacecraft to directly investigate two comets. ICE data from both cometary encounters are included in the International Halley Watch archive.

Tracking and telemetry support were provided by the DSN (Deep Space Network) starting in January 1984. The ISEE-3/ICE bit rate was nominally 2048 bps during the early part of the mission, and 1024 bps during the Giacobini-Zinner comet encounter. The bit rate then successively dropped to 512 bps (on 9/12/85), 256 bps (on 5/1/87), 128 bps (on 1/24/89) and finally to 64 bps (on 12/27/91).

As of January 1990, ICE was in a 355 day heliocentric orbit with an aphelion of 1.03 AU, a perihelion of 0.93 AU and an inclination of 0.1 degree.

An update to the ICE mission was approved by NASA headquarters in 1991. It defined a Heliospheric mission for ICE consisting of investigations of coronal mass ejections in coordination with ground-based observations, continued cosmic ray studies, and special period observations such as when ICE and Ulysses were on the same solar radial line. By May 1995, ICE was being operated with only a low duty cycle, with some support being provided by the Ulysses project for data analysis. Termination of operations of ICE/ISEE3 was authorized 5 May 1997.

In 1999, NASA made brief contact with ICE to verify its carrier signal.

On 18 September 2008, NASA located ICE with the help of KinetX using the Deep Space Network after discovering it had not been powered off after the 1999 contact. A status check revealed that all but one of its 13 experiments were still functioning, and it still had enough propellant for 150 m/s (490 ft/s) of Δv (velocity change).

In early 2014, space enthusiasts started discussing reviving ICE when it approached the Earth in August. However, officials with the Goddard Space Flight Center said the Deep Space Network equipment required for transmitting signals to the spacecraft had been decommissioned in 1999, and was too expensive to replace.

On 15 May 2014, the ISEE-3 Reboot Project successfully raised $125,000 through crowdfunding to re-establish communications with the probe.

On 29 May 2014, the reboot team commanded the probe to switch into Engineering Mode to begin to broadcast telemetry. Project members, using the Goldstone Deep Space Communications Complex DSS-24 antenna, achieved synchronous communication on 26 June and obtained the four ranging points needed to refine the spacecraft's orbital parameters, data needed to calculate maneuvers required to bring the satellite out of heliocentric orbit. The reboot project successfully fired the thrusters on 2 July for the first time since 1987. They spun up the spacecraft to its nominal roll rate, in preparation for the upcoming trajectory correction maneuver in mid-July. However, a longer sequence of thrusters firings on 8 July failed, apparently due to a loss of the nitrogen gas used to pressurize the fuel tanks. The ISEE-3 Reboot Team announced that all attempts to change orbit using the ISEE-3 propulsion system had failed on 24 July. They began shutting down propulsion components to maximize the electrical power available for the science experiments.

In late July 2014, ISEE-3 Reboot Project announced the ISEE-3 Interplanetary Citizen Science Mission would gather data as the spacecraft flies by the Moon on August 10 and continues in heliocentric orbit. With five of the 13 instruments on the spacecraft still working, the science possibilities include listening for gamma ray bursts, where observations from additional locations in the solar system can be valuable. The team plans to acquire data from as much of ISEE-3's 300-day orbit as possible and the project is recruiting additional receiving sites around the globe to improve diurnal coverage. They may upload additional commands while the spacecraft is close to Earth, after which they will mostly be receiving data.

On 10 August 2014, ICE passed the Moon at a distance of approximately 15,600 km (9600 mi) from the surface and continued into heliocentric orbit. It will return to Earth's vicinity in about 17 years.


https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1978-079A

1984
A. R. Klemola discovered asteroid #3712.

1986
Takeshi Urata and Tsuneo Niijima discovered asteroid #3565 Ojima.


We are going to run out of oil!
Visit SpacePowerNow.org to help fix the problem.
SpacePowerNow.org - For Human Survival


Please help support our efforts by shopping from our sponsors.

TechArmor banner

Best Buy Co, Inc. banner

Char-Broil banner

Hurley BeachActive.jpg pixel

468x68 Peekproof Gift Wrap pixel

General Space Posters in affiliation with AllPosters.com

In affiliation with AllPosters.com


This newsletter and its contents are
Copyright © 2006-2024 by The L5 Development Group.  All rights reserved.
 - Publication, in part or in whole, requires previous written permission.
 - Academic or personal-use citations must refer to http://L5Development.com
   as their source.
Thank you for your cooperation.